新闻中心

典型发达国家合流制溢流控制的分析与比较
来源:小九直播cba    发布时间:2024-03-06 13:52:36

  摘要:选取长期实施合流制溢流控制,并有一定区域代表性的发达国家——美国、日本、德国,梳理其合流制排水系统改造及其溢流控制的发展历史、主要管理政策与技术策略,剖析了美国、日本、德国在合流制溢流控制的长期实践与发展过程中,针对合流制系统问题的认识、施策手段与技术策略选择等方面所呈现出的共性与差异,以期为我国不一样的区域合流制排水系统特征条件下的CSO控制提供借鉴。

  从世界范围看,合流制溢流(CSO)控制是国际上许多国家都长期面临的重大问题,有些已经较好地控制了溢流污染带来的影响,有些仍然深受其困扰并还在摸索之中。其中,美国、日本、德国均较早系统性地开展了合流制排水系统改造与溢流控制的相关工作,并已取得了一定成效,总体上代表了不一样的区域典型发达国家对CSO问题的认识与控制水平。为此,梳理美国、日本、德国城市合流制溢流控制的主要发展历史与策略,分析这3个国家在长期实践过程中所取得的共性经验与教训,以及策略选择的差异,对中国不一样的区域合流制排水系统特征条件下的CSO控制是重要的参照。

  美国大量城市合流制管网建设于19世纪后期与20世纪早期。从20世纪中后期开始,美国各城市在开发建设过程中,合流制排水系统的溢流污染问题逐渐突显。随即,美国国家层面提出CSO控制的有关要求,各城市依照地方特点长期开展溢流控制相关工作,至今已有50余年。联邦政府和各地政府投入巨额资金,实施大量系统性改造工程,至今已经有实际效果的减少了溢流污染的排放总量,大幅度降低了溢流污染的危害,但针对大量保留城市合流制系统的区域,仍在持续开展溢流控制的相关工作。

  通过梳理美国联邦政府多年来发布的CSO控制相关立法与政策、重要研究报告,以及各地在执行过程中的实际响应与反馈情况,分析美国合流制溢流控制的总体发展历程。

  1965年,美国联邦水污染控制法(Federal Water Pollution Control Act)首次在联邦法规层面提出控制合流制溢流污染,并要求各地推进开展CSO控制的相关研究与工程示范。1972年,美国联邦水污染控制法的修正案即清洁水法(Clean Water Act)发布,逐步建立国家污染物排放(NPDES)许可证制度,并将CSO纳入排放许可的点源污染管控要求。但在20世纪70年代,大量美国城市点源污染控制的重点工作在于城市污水处理厂的扩建与二级处理工艺的提升改造,对CSO控制的重视程度仍不足。

  20世纪80年代,合流制溢流污染带来的危害愈发突出,美国环保署(EPA)开展了多项针对合流制溢流污染特征的相关研究,发布系列研究报告,芝加哥、旧金山、明尼阿波利斯等城市也开始实施CSO控制的相关工程。1989年,美国EPA发布国家CSO控制策略,重点提出了6项基本控制措施,包括:① 合规、合理的运维管理策略;② 最大程度利用管网系统的能力;③ 评估和提升预处理能力;④ 最大限度地截流至污水厂处理;⑤ 严禁旱季溢流;⑥ 控制CSO中的悬浮物和颗粒物,以此作为各地申请CSO排放许可的基本技术要求。

  20世纪90年代开始,美国各城市按照国家CSO控制策略要求,开展CSO控制工作,但在执行过程中却引发了诸多争议。一方面国家层面联邦政府高度关注CSO污染的危害,推进对CSO的控制;另一方面,由于不同城市合流制系统本身及其改造条件差异较大,各城市具体负责CSO控制的市政职能部门又一致认为国家层面CSO控制策略的可实施性与指导性仍不足。基于此,美国EPA于1992年又专门组建了咨询委员会(MAG),以协助EPA完善国家层面CSO控制的总体策略,并进一步讨论CSO控制的实施周期与投资等问题。委员会成员不仅包括EPA工作人员,还包括不同城市的管理者,以及有关技术协会的技术人员等。通过反复讨论,1992年,国家CSO控制策略在原6项基本控制措施的基础上又增加了CSO污染问题的现场探查与监测、污染的预防、CSO重点影响区域的划定3项要求。同时,考虑到CSO控制的复杂性和长期性,提出在国家层面建立CSO控制的统一框架,给予各城市一定的灵活性来制定适用于当地最经济有效的控制策略。随即在1994年,EPA在1989年CSO控制策略基础上进一步发布国家层面的CSO控制政策,该政策成为美国CSO控制的一项重要纲领性文件,沿用至今。

  2000年,美国国会发布了清洁水法的修正案,即雨季水污染控制法,要求各地合流制排水系统排放许可的申请要遵循CSO控制政策的有关要求。制定9项基本控制措施(取代CSO控制策略中的6项基本措施),并需结合各地具体条件编制CSO长期控制规划(LTCP)。考虑CSO控制管理系统构建的复杂性,各地编制的CSO长期控制规划的实施期限一般为10~20年,并定时进行评估与优化调整。

  进入21世纪后,绿色雨水基础设施受到广泛关注,2007年美国EPA正式发布声明推广绿色基础设施缓解CSO问题,并鼓励将绿色基础设施纳入CSO长期控制规划,“灰绿结合”逐渐取代传统的灰色基础设施控制理念。

  根据美国环保署2004年提交国会的针对合流制排水系统的研究报告,美国现存合流制排水系统的城市分布在32个州,主要位于美国东北部的五大湖区,以及西部发展较早的部分地区,总服务人口约4000万人,合流制管网总长约22.5×104 km。通过从污染物总量削减效果、投资金额、建设周期、改造难度与可行性等多方面综合比较,这些城市大部分没选进行大范围的“合改分”工程,而是转向对合流制溢流污染进行相对有效控制。

  其中,纽约、芝加哥、费城等大型城市合流制排水系统服务范围占排水系统总服务范围的比例均超过60%,旧金山等城市甚至超过90%,这些城市若要实施全面的“合改分”投资巨大,耗时极长,从技术经济最优和可行性的角度,通常选择保留大部分区域的合流制排水系统,通过综合措施控制溢流污染问题,部分区域可结合区域更新改造实现局部的“合改分”。

  即便部分城市的合流制区域占比较小,也必须对整体改造效果、难度和可行性做全面分析。例如,亚特兰大市合流制排水系统服务范围总体占比不足15%,但几乎全部位于城市最高建设密度的中心城区。其在制定CSO长期控制规划时对“合改分”的可行性和预期效果进行了评估分析,如果对80%的合流制区域进行分流改造,且同时需要对雨水径流污染来控制,与保留合流制系统新建调蓄和处理设施对CSO污染来控制的方案作对比,前者的总投资约是后者的2倍。因此,最终亚特兰大市未选择全方面实施“合改分”,而是采用部分区域“合改分”与溢流污染控制相结合的综合方案。

  值得注意的是,也有极少数城市由于其具备特定的改造条件,几乎全面实现了“合改分”。美国明尼苏达州的明尼阿波利斯市就是美国极少数通过长期全方面推进“合改分”来解决合流制溢流问题的成功案例。该市合流制区域面积约15km2,约占城市总面积的10%,面积较小。19世纪50—60年代,在联邦政府发布的《示范城市与大城市发展法案》的影响下,明尼阿波利斯城市管理部门大规模推进“城市重建”工程,占市中心面积约40%、跨越25个街区的区域内约200座建筑被夷为平地,对近600英里(1英里≈1.6 km)城市街道全部进行重建,其间同步实施排水系统的改造与新建,是其决策全方面实施“合改分”的重要基础条件。1986年,该市实施CSO控制项目,通过技术经济分析得出,若沿用并改造原有合流制截流干管,同时升级污水厂达到CSO控制要求,其总投资要远高于雨污分流改造,随即快速推进“合改分”。至1996年,通过10年实现95%的合流制区域基本完成改造,剩余的5%位于城市中心城区,至2007年基本全部完成改造,虽仍剩余8个沿河溢流排口,但近10年均未再发生溢流事件,改造总历时近50年。

  CSO长期控制规划需要首先明确当地CSO具体控制目标。CSO控制政策提出长期控制规划中CSO控制目标能够最终靠“推定法”与“实证法”确定,推定法即综合水环境保护要求与技术经济分析等,提出可实现的CSO控制水平,常以CSO总量控制或频次控制为目标;实证法则要进一步明确与水体水质控制指标的关系,例如针对受损水体,需制定最大日负荷总量(TMDL)计划,明确合流制溢流污染负荷需达到的削减要求。

  在确定CSO控制总体目标后,根据不一样措施的溢流污染控制效果、实施可行性、投资金额,综合确定具体的溢流控制策略,涉及管网、污水厂、CSO分散处理设施、CSO调蓄设施与源头减排等各子系统控制标准的综合衔接与系统决策。美国EPA在2001年提交国会的研究报告中,对全国439个地区CSO长期控制规划进行统计,分析了不一样技术措施的应用占比,结果如表1所示。

  由表1能够准确的看出,管网系统的分流改造(包括完全分流和不完全分流)是应用最为广泛的技术措施,需要指出,这里的分流改造并非整个城市范围的全面“合改分”,而是作为技术措施的一种,大部分城市均在适宜区域进行了局部改造,以尽可能减少雨水径流入流对合流制管网系统的影响。

  此外,对管网系统的优化是应用最多的设施类别。在“9项基本控制措施”中便要求城市合流制区域首先应充分的利用管网与污水处理厂的控制能力。1994年,美国EPA发布针对合流制区域污水处理厂的“混合”政策,即在达到一定排放规定要求的前提下,允许暴雨时,超过污水厂二级解决能力但未超过一级解决能力的雨污水,只经过一级处理单元处理后与二级处理单元出水混合,经消毒处理后排放。考虑到大量城市污水处理厂位于郊区,有较为充足的空间条件可以建设雨季来水的调蓄设施及一级强化处理设施,基于此,部分城市选择尽可能发挥管网的截流能力与污水处理厂的综合解决能力,由此形成的“大截流系统”在美国合流制溢流控制中具有一定的代表性。以西雅图市West Point污水处理厂服务的合流制区域为例,污水厂一级处理单元最大解决能力匹配的截流倍数约为4,二级处理单元最大解决能力匹配的截流倍数约为2。

  绿色基础设施近年来被广泛关注,其在减少合流制系统雨水径流入流的同时,又发挥了对雨水径流的净化、下渗回补地下水等多重效益,同时与新建管网系统相比,可部分减少工程实施成本。2007年,美国EPA发布声明,推广结合绿色雨水基础设施控制CSO。多个城市在其CSO长期控制规划的修编中,也相应补充了结合绿色基础设施的实施方案。费城在2009年重新编制了CSO长期控制规划,更名为“绿城清水”计划,重点推进绿色基础设施控制CSO污染,绿色设施投资占比超过65%;芝加哥于1972年开始实施深隧与调蓄水库计划(TARP),预计于2029年完全完工,届时实现溢流频次削减超过90%,2014年,芝加哥市政府发布绿色雨水管理战略,推广绿色雨水基础设施,预期通过绿色基础设施结合深隧与调蓄水库,可基本完全消除芝加哥市408个溢流口的雨季溢流。

  综上所述,美国在逐步认识合理推进合流制溢流控制的过程中,大多数表现的特点和经验包括:

  ① EPA始终作为主管的责任部门,持续推动国家层面针对CSO控制的立法、政策和相关管理要求,明确CSO作为重要点源污染进行管控,为制定区别于城市污水与雨水径流污染的控制要求,开辟了可行性通道;

  ② 从CSO国家策略中比较宽泛的控制要求到后期更综合的控制政策的制定,既有国家层面总体的统一控制框架,又强调了各地条件的巨大差异,各地具体采取“因地制宜”与“经济高效”的对策;

  ③ 绝大部分城市仍然保留并沿用了合流制系统,未全面实施“合改分”,重点控制溢流污染,局部区域的分流改造作为综合技术措施的一部分纳入总体方案时予以考虑;

  ④ 强调合流制溢流控制的长期性与复杂性,以“9项基本控制措施”与“长期控制规划”为主要手段,并建立分期实施与优化调整机制,避免走弯路和付出额外的代价;

  ⑤ 技术策略上“大截流系统”在美国部分城市有一定代表性。近年来,多个城市推广绿色雨水基础设施与CSO控制的结合,通过“灰绿结合”,实现总体方案在技术经济上的优化。

  日本城市的合流制排水系统大多是20世纪60年代以前建设,70年代后期大规模城市化过程中,新建城市基本采用分流制系统。据日本下水道协会1999年的统计资料显示,日本采用合流制排水系统的城市共195座,涉及城市类型分布详见表2。其中,人口超过100万人的城市有11个,例如,东京与大阪均保留有大范围的合流制区域(占比均超过80%)。从20世纪80年代开始,日本推进对合流制溢流的控制,至今也经历了近40年的发展。

  特别声明:北极星转载其他网站内容,出于传递更加多信息而非盈利之目的,同时并不意味着赞成其观点或证实其描述,内容仅供参考。版权属于原本的作者所有,若有侵权,请联系我们删除。

  摘要:美国金县的合流制溢流控制经过40多年的研究和实践,已形成了较为完整的技术标准体系和监督管理体系,取得了良好的成效,很多方面在美国处于较领先水平。金县将污水处理厂、合流制溢流调蓄与处理厂、合流制管网溢流排放口统一纳入1个排放许可来管理,“厂-网”排放标准与工艺工况设计以受纳水体

  摘要:合流制溢流(CSO)控制子系统之间的衔接关系是科学合理制定CSO控制策略、长期规划和实施方案一定解决好的基础性、系统性问题。结合各城市CSO控制中存在的一些明显问题和误区,详细剖析CSO控制各子系统之间的衔接及制约关系,以及这些基本关系受现实条件的影响。进而提出通过系统优化配置实现CSO

  摘要:鉴于城市合流制排水系统本身的复杂性,以及我国不同城市和地区发展过程中由于历史和人为原因,政策导向等因素的综合影响,我国城市合流制及相关排水系统呈现出极其复杂的特征。基于对我国城市合流制排水系统问题的长期观察与思考,结合对多个城市近年来合流制排水系统改造与溢流控制的跟踪调研与

  导读:合流制溢流(CSO)具有污水与降雨径流双重特性,受随机降雨、多污染源、阶段数据等条件影响,CSO控制标准以基于控制效果的年均溢流频次、年溢流体积控制率和年污染物总量削减率为主;CSO控制标准的确定以受纳水体水质为目标导向,以数据为基础,采用“流域治理、污染分担”策略,经技术经济分析确定

  6月20日,襄阳市公共资源交易网发布襄阳市排水设施收费监理处(市城市污水治理公司)大李沟流域溢流污染控制工程大李沟南片区(东侧)EPC总承包招标公告,项目预算金额为17628.61万元。大李沟流域溢流污染控制工程EPC总承包分三个标段招标,其中第一标段为大李沟流域溢流污染控制工程大李沟北片区EPC总承

  导语:为了控制溢流污染和初期雨水污染,兼顾旱天和雨天处理运行需求,葛塘河净水站采用了污水处理设备、调蓄池和地下停车场一体化全地下合建的方式。污水处理采用膜生物反应器(MBR)主体工艺,设计规模为1.20万m3/d,调蓄池设计规模为5000m3。净水站兼具污水处理、雨水调蓄以及城市交通调节等功能。实

  由管道溢流导致的水体污染是国际上的共性问题。然而,现有的研究缺乏对我国溢流污染的特性问题、控制策略和潜在的处理技术的深入剖析。因此,首先回顾了溢流污染导致的水体黑臭的成因;通过总结典型发达国家的发展历史,指出我国溢流污染面对的特性问题;剖析溢流污染中主要污染成分,总结国内外最新的

  摘要:国内外均有应用于缓解城市内涝和溢流污染的深隧系统,而深隧系统成功运营的关键技术在于深隧的流量监测,应该要依据深隧系统的特点选择正真适合的流量监测方法。基于技术比选,武汉市大东湖污水深隧系统选择基于超声波互相关原理的超声波流量计作为深隧中流量监测设备,该设备可实现可视化的实时流速监

  进入5月,我国汛期已宣告来临。除了自然灾害风险需要防范外,各地城市或许还面临一个令人头疼的问题——强降雨后,河道“脆弱”,黑臭现象反弹。怎样使经过整治的河道经受住暴雨“考验”,是当前城市黑臭水体治理急需面对的问题。继2018年《城市黑臭水体治理攻坚战实施方案》、2019年《城镇污水处理提

  导言:去年,联合国气候大会(COP26)在英国格拉斯哥已闭幕,能够说是同时期最为关注的一个大事件。实际上,人们在关注COP26是否能达成里程碑式的碳减排文件和共识的同时,英国去年底还发生了一件热度较高的与环境有关的事件,引起了英国学者和民众与政府的博弈。事件起因是英国众议院在10月份否决了控

  摘要:近年来,珠海市的黑臭水体治理取得了一定成效,然而城中村合流制溢流污染问题成为城市水环境进一步改善的难点,迫切地需要对其控制策略进行深入研究。为此,采用管道实时水质水量监测和暴雨洪水管理模型(SWMM)模拟相结合的方法,提出了通过理论截流倍数判别,低影响开发(LID)源头管控与截流-调

  初期雨厂项目是武汉南湖水环境提升工程的建设内容之一。该项目于2020年初进行了雨天溢流污染消减设施招投标,汉斯琥珀有幸参与该项目。随后武汉发生了严重的新冠肺炎疫情,乃至全国进入了居家禁止外出的状态,在此状态下,汉斯琥珀配合设计院完成了设备技术参数确认,完成施工图纸的工作。武汉疫情结束

  摘要合流制系统改造及溢流污染控制是黑臭河道治理的核心工作之一。文中在总结国内外合流制溢流污染(CSO)治理措施的基础上,论述了巢湖市排水系统溢流污染控制策略。系统分析了合流制溢流污染产生的原因,依据巢湖市污染排查和管网检测等前期研究相关结果,提出了整体控制策略;并选取典型区域小王庄中

  在合流制末端做滞水池(日本),或者溢流池、截流池(德国),减少合流制末端雨天的溢流,为合流制完善起到了重要作用。

  近日,北京市人民政府办公厅关于印发了《北京市城市积水内涝防治及溢流污染控制实施方案(2021年—2025年)》的通知,明确资金支持政策。加大对城市积水内涝防治及溢流污染控制设施新建和更新改造工程的资金支持力度,确保资金及时足额到位。中心城区、城市副中心行政办公区、昌平区回龙观天通苑地区的雨水泵站、雨水管涵、物联网感知设备运营经费纳入政府特许经营服务协议解决。

  摘要:近年来,珠海市的黑臭水体治理取得了一定成效,然而城中村合流制溢流污染问题成为城市水环境进一步改善的难点,迫切地需要对其控制策略进行深入研究。为此,采用管道实时水质水量监测和暴雨洪水管理模型(SWMM)模拟相结合的方法,提出了通过理论截流倍数判别,低影响开发(LID)源头管控与截流-调

  合流制、分流制是城市排水两种并存的排水体制,都有各自的优缺点、且都是合理的形式。合流制因造价低、占用道路资源和维护管理工作量相对少,多被世界很多较早建设排水系统的城市(地区)所采用,并沿用至今,甚至占有很高的比例。我国也不例外,合流制在很多城市的老城区所采用。但是合流制会在雨天产

  导读:住房和城乡建设部最近在污水处理提质增效要求中提出,加强排水管网改造和完善。排水体制有合流制和分流制两种,上海市中心城区有较多的合流制排水系统,20世纪末对合流制溢流污染采取调蓄池控制及合流制排水系统改为分流制系统等内容做了研究,并在服务范围202hm的汉阳排水系统开展实践,经过1

  小编说:黄孝河位于湖北省武汉市汉口中心片区,历史悠远长久,承载着武汉市的沧桑巨变,伴随城市的发展,水环境逐步恶化。黄孝河、机场河和巡司河是武汉市最难治的三条河,被形象地比喻为武汉“三大名流”,黄孝河在治理前的情况很糟糕,目前已然成为影响城市形象的黑臭水体,是建设部跟环保部挂牌督办的